martes, 2 de junio de 2009

Tema 11

Definición de unidades comunes en electrónica

Ampere: [Amperio] (A): Unidad de medida de la corriente eléctrica, es la cantidad de carga que circula por un conductor por unidad de tiempo I = Q/t
Es la corriente eléctrica (I) que produce una fuerza de 2 x 10-7newton por metro entre dos conductores paralelos separados por 1 metro.1 A = 1 Coulombio / segundo1 A = 1000 mA (miliamperio)Ver también:- Corriente continua - Corriente alterna (C.A.)

Coulomb [coulombio] (C): Unidad de medición de la carga eléctrica. Carga Q que pasa por un punto en un segundo cuando la corriente es de 1 amperio. 1 Coulomb = 6.28x1018 electrones.Ver: Ley de Coulomb

Joule [julio] (J): Es el trabajo (W) hecho por la fuerza de un Newton actuando sobre la distancia de 1 metro.
Watt [Vatio] (W): Unidad de la potencia. Potencia (P) requerida para realizar un trabajo a razón de 1 julio (joule) por segundo.Ver: Potencia en una resistencia (Ley de Joule)

Farad [Faradio] (F): Unidad de medida de los capacitores / condensadores.Es la capacitancia (C) en donde la carga de 1 coulombio produce una diferencia de potencial de 1 voltio.Ver también:- Clasificación de los condensadores- Capacitor electrolítico- Códigos de los condensadores- Código JIS condensadores

Henry [henrio] (H): Unidad de medida de los inductores/ bobinas.Es la inductancia (L) en que 1 voltio es inducido por un cambio de corriente de 1 amperio por segundo.Ver:Bobina / inductor con núcleo metálico- Bobinas / inductor con núcleo de aire- Bobinas (inductores) serie y paralelo- Bobina y corrientes, factor calidad Q- Inductor: respuesta al escalón unitario

Ohm [ohmio] (Ω): Unidad de medición de la resistencia eléctrica, representada por la letra griega (Ω) omega.Es la resistencia que produce una tensión de 1 voltio cuando es atravesada por una corriente de 1 amperio.Ver:- La Resistencia (resistor),- Resistencia variable (potenciómetro, reóstato)- Resistencias bobinadas- Código de colores de las resistencias- Rangos de medida para resistores en un VOM- Medir esistencias de bajo valor- Medir resistencias sensibles

Siemens (S): Unidad de medida de la conductancia (G)Es la conductancia que produce una corriente de 1 amperio cuando se aplica una tensión de 1 voltio. Es el recíproco del Ohmio, antes llamado mho.Ver: Resistencia / conductancia

Voltio] (V): Unidad de medición de la diferencia de potencial eléctrico o tensión eléctrica, comúnmente llamado voltaje.Es la diferencia de potencial entre dos puntos en un conductor que transporta una corriente de 1 amperio, cuando la potencia disipada entre los puntos es de 1 watt.Ver: Tensión, voltaje

Hertz [hercio] (Hz): Cantidad de ciclos completos de una onda en una unidad de tiempo1 Hertz = 1 ciclo/segVer: Corriente alterna (C.A.)

Radián: Un radián es el ángulo que abarca la porción de circunferencia que es igual a la longitud del radio del círculo.

Frecuencia angular (w): Es radianes por segundo. w = 2nf. (n= pi)Ver: El radián

Tiempo (t): Unidad de medida del tiempo (seg.)Ver: La constante de tiempo

Tema 10

Leyes de Kirchoff

Se trata de dos 'reglas' que permiten estudiar circuitos en forma sistemática. Estas reglas se deducen en forma directa de las ecuaciones de campo. Para formular las leyes se necesita definir algunos conceptos:
Circuito: Un camino conductor, en el que se encuentran fuentes de 'Fem.' (baterías).

Nudo o Nodo : Puntos en un circuito en los que se unen al menos tres conductores.
*Ley de Nodos: Es la ecuación de continuidad -régimen permanente-. "La suma algebraica de las corrientes que entran a un nodo es siempre cero."
*Ley de Mallas: Es la 'relación fundamental', discutida recientemente : `En toda trayectoria cerrada en un circuito, la suma algebraica de las 'Fem.' y las caídas de potencial (RI) es igual a cero'.
Observamos que para aplicar correctamente esta leyes es necesario establecer una convención:
Cuando, al recorrer la trayectoria, nos movemos en el sentido de la corriente, la caída de potencial (RI) tiene signo (-).
Si al pasar por una fuente de 'Fem.' nos movemos del terminal (-) al terminal (+), la 'Fem.' en cuestión se toma con signo (+).
Leyes de Kirchoff:
Las leyes de Kirchoff son dos, y junto a la de Ohm son las leyes FUNDAMENTALES de la electrotecnia, por consiguiente de la electrónica.Primera ley de Kirchoff: "La suma del valor de las corrientes entrantes a un nodo es igual a la suma de las corrientes salientes de dicho nodo". Nodo le llamamos a un punto en el cual se juntan varios conductores.Segunda ley de Kirchoff: "La suma algebraica de las caídas de tensión en un circuito cerrado es igual a 0". Significa que la suma de las tensiones aplicadas a las cargas, tiene que ser igual a la aplicada al sistema

Tema 9

Protón

Partícula nuclear con carga positiva igual en magnitud a la carga negativa del electrón; junto con el neutrón, está presente en todos los núcleos atómicos.

Electrón

Tipo de partícula elemental de carga negativa que forma parte de la familia de los leptones y que, junto con los protones y los neutrones, forma los átomos y las moléculas.

Neutrón

Partícula sin carga que constituye una de las partículas fundamentales que componen la materia.

Tema 8

Ley de Ohm

Circuito mostrando la Ley de Ohm: Una fuente eléctrica con una diferencia de potencial V, produce una corriente eléctrica I cuando pasa a través de la resistencia R
La Ley de Ohm establece que "La intensidad de la corriente eléctrica que circula por un conductor es directamente proporcional a la diferencia de potencial aplicada e inversamente proporcional a la resistencia del mismo", se puede expresar matemáticamente en la siguiente ecuación:

donde, empleando unidades del Sistema internacional, tenemos que:
I = Intensidad en amperios (A)
V = Diferencia de potencial en voltios (V)
R = Resistencia en ohmios (Ω).
Esta ley no se cumple, por ejemplo, cuando la resistencia del conductor varía con la temperatura, y la temperatura del conductor depende de la intensidad de corriente y el tiempo que esté circulando.
La ley define una propiedad específica de ciertos materiales por la que se cumple la relación:

Un conductor cumple la Ley de Ohm sólo si su curva V-I es lineal, esto es si R es independiente de V y de I.

Tema 7

Campo eléctrico

El campo eléctrico es el modelo que describe la interacción entre cuerpos y sistemas con propiedades de naturaleza eléctrica. Matemáticamente se lo describe como un campo vectorial en el cual una carga eléctrica puntual de valor "q" sufrirá los efectos de una fuerza mecánica "F" que vendrá dada por la siguiente ecuación:
Esta definición indica que el campo no es directamente medible, sino a través de la medición de la fuerza actuante sobre alguna carga. La idea de campo eléctrico fue propuesta por Michael Faraday al demostrar el principio de inducción electromagnética en el año 1832.
Apartir de la ecuación anterior podemos definir un campo electrico en un punto p como:
donde sabemos que k es la constante de un campo se halla k = 1/(4πε); donde ε es la constante del ambiente o espacio donde se está estudiando el campo. â es el vector dirección unitario (o versor) que va desde la carga hasta el punto. a es la norma del vector ā que define la distancia entre el punto y la carga.

Tema 6

Leyes de Newton

onLa primera y segunda ley de Newton, en latín, en la edición original de su obra Principia Mathematica.
Las Leyes de Newton son tres principios a partir de los cuales se explican la mayor parte de los problemas planteados por la dinámica, en particular aquellos relativos al movimiento de los cuerpos.
En concreto, la relevancia de estas leyes radica en dos aspectos:
por un lado, constituyen, junto con la transformación de Galileo, la base de la mecánica clásica;
por otro, al combinar estas leyes con la Ley de la gravitación universal, se pueden deducir y explicar las Leyes de Kepler sobre el movimiento planetario.
Así, las Leyes de Newton permiten explicar tanto el movimiento de los astros, como los movimientos de los proyectiles artificiales creados por el ser humano, así como toda la mecánica de funcionamiento de las máquinas.
Su formulación matemática fue publicada por Isaac Newton en 1687 en su obra Philosophiae Naturalis Principia Mathematica.[1]
No obstante, la dinámica de Newton, también llamada dinámica clásica, sólo se cumple en los sistemas de referencia inerciales; es decir, sólo es aplicable a cuerpos cuya velocidad dista considerablemente de la velocidad de la luz (que no sobrepasen los 300,000 km/s); la razón estriba en que cuanto más cerca esté un cuerpo de alcanzar esa velocidad (lo que ocurriría en los sistemas de referencia no-inerciales), más posibilidades hay de que incidan sobre el mismo una serie de fenómenos denominados efectos relativistas o fuerzas ficticias, que añaden términos suplementarios capaces de explicar el movimiento de un sistema cerrado de partículas clásicas que interactúan entre sí. El estudio de estos efectos (aumento de la masa y contracción de la longitud, fundamentalmente) corresponde a la teoría de la relatividad especial, enunciada por Albert Einstein en 1905

Tema 5

Campo magnético

Líneas mostrando el campo magnético de un imán de barra, producidas por limaduras de hierro sobre papel.
El campo magnético es una región del espacio en la cual una carga eléctrica puntual de valor q que se desplaza a una velocidad , sufre los efectos de una fuerza que es perpendicular y proporcional tanto a la velocidad como al campo, llamada inducción magnética o densidad de flujo magnético. Así, dicha carga percibirá una fuerza descrita con la siguiente igualdad.
(Nótese que tanto F como v y B son magnitudes vectoriales y el producto cruz es un producto vectorial que tiene como resultante un vector perpendicular tanto a v como a B). El módulo de la fuerza resultante será
La existencia de un campo magnético se pone de relieve gracias a la propiedad localizada en el espacio de orientar un magnetómetro (laminilla de acero imantado que puede girar libremente). La aguja de una brújula, que evidencia la existencia del campo magnético terrestre, puede ser considerada un magnetómetro.

tema 4

Ley de Gauss

Flujo del campo eléctrico
El flujo (símbolo ) es una propiedad de cualquier campo vectorial referida a una superficie hipotética que puede ser cerrada o abierta. Para un campo eléctrico, el flujo () se mide por el número de líneas de fuerza que atraviesan la superficie.
Para definir a con precisión considérese la figura, que muestra una superficie cerrada arbitraria dentro de un campo eléctrico.
La superficie se encuentra dividida en cuadrados elementales , cada uno de los cuales es lo suficientemente pequeño como para que pueda ser considerado plano. Estos elementos de área pueden ser representados como vectores , cuya magnitud es la propia área, la dirección es normal a la superficie y el sentido hacia afuera.
En cada cuadrado elemental también es posible trazar un vector de campo eléctrico . Ya que los cuadrados son tan pequeños como se quiera, puede considerarse constante en todos los puntos de un cuadrado dado.
y caracterizan a cada cuadrado y forman un ángulo entre sí y la figura muestra una vista amplificada de dos cuadrados.
El flujo, entonces, se define como sigue:
O sea:

Flujo para una superficie cilíndrica colocada en un campo uniforme
Supóngase una superficie cilíndrica colocada dentro de un campo uniforme tal como muestra la figura:

El flujo puede escribirse como la suma de tres términos, (a) una integral en la tapa izquierda del cilindro, (b) una integral en la superficie cilíndrica y (c) una integral en la tapa derecha:
Para la tapa izquierda, el ángulo , para todos los puntos, es de π, tiene un valor constante y los vectores son todos paralelos
Entonces:
siendo el área de la tapa. Análogamente, para la tapa derecha:
Finalmente, para la superficie cilíndrica:
Por consiguiente: da cero ya que las mismas lineas de fuerza que entran, después salen del cilindro.

Flujo para una superficie esférica con una carga puntual en su interior

Considérese una superficie esférica de radio r con una carga puntual q en su centro tal como muestra la figura. El campo eléctrico es paralelo al vector superficie , y el campo es constante en todos los puntos de la superficie esférica.
En consecuencia:

Forma integral de la ley gauss
Su forma integral utilizada en el caso de una distribución extensa de carga puede escribirse de la manera siguiente:

donde Φ es el flujo eléctrico, es el campo eléctrico, es un elemento diferencial del área A sobre la cual se realiza la integral, QA es la carga total encerrada dentro del área A, ρ es la densidad de carga en un punto de V y εo es la permitividad eléctrica del vacío.

Forma diferencial de la ley de Gauss
Tomando la ley de Gauss en forma integral.

Aplicando al primer termino el teorema de Gauss de la divergencia queda

Como ambos lados de la igualdad poseen diferenciales volumétricas, y esta expresión debe ser cierta para cualquier volumen, solo puede ser que:

Que es la forma diferencial de la Ley de Gauss (en el vacío).
Esta ley se puede generalizar cuando hay un dieléctrico presente, introduciendo el campo de desplazamiento eléctrico . de esta manera la Ley de Gauss se puede escribir en su forma más general como

Finalmente es de esta forma en que la ley de gauss es realmente útil para resolver problemas complejos de maneras relativamente sencillas.

Deducción de la ley de Gauss a partir de la ley de Coulomb
La ley de Gauss puede deducirse matemáticamente a través del uso del concepto de ángulo sólido, que es un concepto muy similar a los factores de vista conocidos en la transferencia de calor por radiación.
El ángulo sólido ΔΩ que es sostendido por ΔA sobre una superficie esférica, se define como:
siendo r el radio de la esfera.
como el área total de la esfera es 4πr2 el ángulo sólido para ‘’toda la esfera’’ es:
la unidad de este ángulo es el estereorradián (sr)
Si el área ΔA no es perpendicular a las líneas que salen del origen que subtiende a ΔΩ, se busca la proyección normal, que es:
Si se tiene una carga "q" rodeada por una superficie cualquiera, para calcular el flujo que atraviesa esta superficie es necesario encontrar para cada elemento de área de la superficie, para luego sumarlos. Como la superficie que puede estar rodeando a la carga puede ser tan compleja como quiera, es mejor encontrar una relación sencilla para esta operación:
De esta manera ΔΩ es el mismo ángulo sólido subentendido por una superficie esférica. como se mostró un poco más arriba ΔΩ = 4π para cualquier esfera, de cualquier radio. de esta forma al sumar todos los flujos que atraviesan a la superficie queda:
que es la forma integral de la ley de Gauss. La ley de Coulomb también puede deducirse a través de Ley de Gauss.

La ley de Gauss puede ser utilizada para demostrar que no existe campo eléctrico dentro de una jaula de Faraday sin cargas eléctricas en su interior. La ley de Gauss es la equivalente electrostática a la ley de Ampère, que es una ley de magnetismo. Ambas ecuaciones fueron posteriormente integradas en las ecuaciones de Maxwell.
Esta ley puede interpretarse, en electrostática, entendiendo el flujo como una medida del número de líneas de campo que atraviesan la superficie en cuestión. Para una carga puntual este número es constante si la carga está contenida por la superficie y es nulo si esta fuera (ya que hay el mismo número de líneas que entran como que salen). Además, al ser la densidad de líneas proporcionales a la magnitud de la carga, resulta que este flujo es proporcional a la carga, si está encerrada, o nulo, si no lo está.
Cuando tenemos una distribución de cargas, por el principio de superposición, sólo tendremos que considerar las cargas interiores, resultando la ley de Gauss.
Sin embargo, aunque esta ley se deduce de la ley de Coulomb, es más general que ella, ya que se trata de una ley universal, válida en situaciones no electrostáticas en las que la ley de Coulomb no es aplicable.

Ley de Gauss para el magnetismo

Al igual que para el campo eléctrico, existe una ley de Gauss para el magnetismo, que se expresa en sus formas integral y diferencial como

Esta ley expresa la inexistencia de cargas magnéticas o, como se conocen habitualmente, monopolos magnéticos. Las distribuciones de fuentes magnéticas son siempre neutras en el sentido de que posee un polo norte y un polo sur, por lo que su flujo a través de cualquier superficie cerrada es nulo.
En el hipotético caso de que se descubriera experimentalmente la existencia de monopolos, esta ley debería ser modificada para acomodar las correspondientes densidades de carga, resultando una ley en todo análoga a la ley de Gauss para el campo eléctrico. La Ley de Gauss para el campo magnético quedaría como

donde ρm densidad de corriente , la cual obliga a modificar la ley de Faraday.

Analogía gravitacional
Dada la similitud entre la ley de Newton de la gravitación universal y la ley de Coulomb, puede deducirse una ley análoga para el campo gravitatorio, la cual se escribe
siendo G la constante de gravitación universal. El signo menos en esta ley y el hecho de que la masa siempre sea positiva significa que el campo gravitatorio siempre es atractivo y se dirige hacia las masas que lo crean.
Sin embargo, a diferencia de la ley de Gauss para el campo eléctrico, el caso gravitatorio es sólo aproximado y se aplica exclusivamente a masas pequeñas en reposo, para las cuales es válida la ley de Newton. Al modificarse la teoría de Newton mediante la Teoría de la Relatividad general, la ley de Gauss deja de ser cierta, ya que deben incluirse la gravitación causada por la energía y el efecto del campo gravitatorio en el propio espaciotiempo (lo que modifica la expresión de los operadores diferenciales e integrales).

Distribución esférica de carga

Considérese una esfera uniformemente cargada de radio R. La carga existente en el interior de una superficie esférica de radio r es una parte de la carga total, que se calcula multiplicando la densidad de carga por el volumen de la esfera de radio r:
Si Q es la carga de la esfera de radio R, entonces, se tiene:
Dividiendo miembro a miembro ambas expresiones y operando apropiadamente:
Como se demostró en una sección anterior y teniendo en cuenta que según la ley de Gauss , se obtiene:
Por lo tanto, para puntos interiores de la esfera:
Y para puntos exteriores:
En el caso de que la carga se distribuyera en la superficie de la esfera, es decir, en el caso de que fuera conductora, para puntos exteriores a la misma la intensidad del campo estaría dada por la segunda expresión, pero para puntos interiores a la esfera, el valor del campo sería nulo ya que la superficie gaussiana que se considerara no encerraría carga alguna.

Tema 3

Ley de Ampere

En física del magnetismo, la ley de Ampère, también conocida como efecto Oersted, relaciona un campo magnético estático con la causa que la produce, es decir, una corriente eléctrica estacionaria. Es análoga a ley de Gauss.

Ley de Ampère original
Forma integral
Dada una superficie abierta S por la que atraviesa una corriente eléctrica I, y dada la curva C, curva contorno de la superficie S, la forma original de la ley de Ampère para medios materiales es: donde
es el campo magnético,
es la corriente encerrada en la curva C,
Y se lee: LA CIRCULACION DEL CAMPO a lo largo de la curva C es igual al flujo de la densidad de corriente sobre la superficie abierta S, de la cual C es el contorno.
En presencia de un material magnético en el medio, aparecen campos de magnetización, propios del material, análogamente a los campos de polarización que aparecen en el caso electrostático en presencia de un material dieléctrico en un campo eléctrico.